Exchangeable Convertible Bond Valuation

A convertible bond issuer pays periodic coupons to the convertible bond holder. The bond holder can convert the bond into the underlying stock within the period(s) of time specified by the conversion schedule. The bond issuer can call the bond and the holder can put it according to the call and put provisions. For pricing a regular convertible bond, you can find a reference at https://finpricing.com/lib/EqConvertible.html

A convertible bond with exchangeable feature, which can be converted into a stock issued by a party different from the bond issuer. Assume that the stock conversion is vulnerable. If the bond-issuer has defaulted by a time, $t$, then the stock price is zero. If, on the other hand, the bond-issuer has not defaulted by time $t$, then the stock price is given by $S_t$ or 0.

We discretize the stock-price process based on a trinomial tree approach, and the respective default-time processes based on a two-state (i.e., default or no-default) tree. In order to discretize the processes above simultaneously, we then combine the respective trees into a three-factor tree.

Each node on the combined tree has $12 = 3 \times 2 \times 2$ children; moreover, since the individual processes above are independent, the branching probability associated with each child is given by the product of the corresponding probabilities on each respective tree.

The Exchangeable feature assumes that the convertible bond and the underlying stock are issued by different parties. There are two possible cases with respect to stock conversion:

- **covered**: the bond issuer holds the underlying stock for the life time of the convertible;
- **vulnerable**: the bond issuer does not hold the stock prior to the stock conversion.
We assume a convertible bond that is specified by

- \((t_1, t_2, \ldots, t_M)\) - the set of coupon dates, \(t_M\) is also the bond maturity date;
- \((c_1, c_2, \ldots, c_M)\) - the set of coupons, each coupon payable on the respective coupon date;
- \(P\) - the bond principal, payable at maturity date, \(t_M\).
- \(T_x\) - the exercise date on which the bond can be converted into the underlying stock, which pays dividends.

We consider discrete dividends that are specified by absolute amounts paid at pre-determined times. In particular we assume that an absolute amount, \(d_i\), is paid at a time, \(T_i\), for \(i = 1, \ldots, N\), where \(0 < T_1 < \ldots < T_N \leq T\) (here \(T \equiv t_M\) is the convertible’s maturity). We model the stock price based on a Hull-White approach. Specifically, let

- \(G_t\) denote a capital gains process,
- \(S_t\) represent the stock price,
- \(\tau\) denote the bond issuer’s default time.

Let

\[
D_i = \sum_{j=i}^{N} d_j e^{-\int_{0}^{T_i} r(s)ds}
\]

for \(i = 1, \ldots, N\), where \(r_t\) is a deterministic risk-free rate. We then assume that
for $t > 0$, where

- $h_t$ is a deterministic hazard-rate,
- $I_{(T_{i-1}, T_i)}(t) = \begin{cases} 1, & t \in (T_{i-1}, T_i], \\ 0, & \text{otherwise}, \end{cases}$

(here we set $T_0 = 0$).

Furthermore the process $\{G_t | t \geq 0\}$ satisfies, under the risk-neutral probability measure, an SDE of the form

$$dG_t = G_t \left( [r_t + h_t] dt + \sigma dW_t \right)$$

(3)

where

- $\sigma$ is a constant volatility parameter,
- $\{W_t | t \geq 0\}$ is a standard Brownian motion,
- $G_0 = S_0 - \sum_{i=1}^{N} d_i e^{-\int_0^T r(s) ds}$.

Thus,

$$G_t = G_0 e^{\sigma^2/2 + \sigma W_t}$$

(5)
Let

- \( T_j \) be the dividend date immediately after the option maturity date,
  i.e. \( T_j = \min(T_1, T_2, \ldots, T_N) \) such that \( T_j \geq T_x \), where \( (T_1, \ldots, T_N) \) is the set of dividend payment dates;

- \( t_m \) is the coupon date immediately after the option maturity date,
  i.e. \( t_m = \min(t_1, t_2, \ldots, t_M) \) such that \( t_m \geq T_x \).

Then

\[
S_{T_x} = \left( G_{T_x} + e^{\int_{T_x}^{T_x}(r+h)ds} \sum_{i=j}^{N} d_i e^{-\int_{T_x}^{T_x}rds} \right) \mathbb{1}_{\tau > T_x} = e^{\int_{0}^{T_x}(r+h)ds} \left( G_0 e^{-\frac{\sigma^2}{2}T_x + \sigma W_{T_x}} + \sum_{i=j}^{N} d_i e^{-\int_{0}^{T_x}rds} \right) \mathbb{1}_{\tau > T_x} \tag{6}
\]

Using arguments similar to those used in ref [1] one can show that the \( T_x \)-time price of the straight bond, \( B_{T_x} \), is

\[
B_{T_x} = \left( Pe^{\int_{T_x}^{T_x}(r+h)ds} + \sum_{k=m}^{M} c_k e^{\int_{T_x}^{T_x}(r+h)ds} \right) \mathbb{1}_{\tau > T_x} \tag{7}
\]

and its present value is

\[
B_{0,T_x} = Pe^{\int_{0}^{\tau}(r+h)ds} + \sum_{k=m}^{M} \hat{c}_k e^{\int_{0}^{\tau}(r+h)ds} \tag{8}
\]
If the conversion ratio is $\gamma$, the present value of the conversion option is $V =$

\[
E \left( e^{-\int_0^{T_x} r \, ds} \max (\gamma S_{T_x} - B_{T_x}, 0) \right)|\mathcal{F}_0 =
\]

\[
= E \left[ \max \left( e^{\int_0^{T_x} h \, ds} \gamma \left( G_0 e^{-\frac{\sigma^2}{2} t + \sigma W} + \sum_{i=j}^{N} d_i e^{-\int_0^{T_i} r \, ds} \right) 1_{T_x > \tau} 
- \left( P e^{-\int_0^{T_x} r \, ds} e^{-\int_0^{T_x} h \, ds} + \sum_{k=m}^{M} c_k e^{-\int_0^{T_k} (r+h) \, ds} \right) 1_{T_x > \tau}, 0 \right) \right]|\mathcal{F}_0
\]

\[
= e^{\int_0^{T_x} h \, ds} E \left[ \max \left( \left( \gamma G_0 e^{-\frac{\sigma^2}{2} t + \sigma W} + \gamma \sum_{i=j}^{N} d_i e^{-\int_0^{T_i} r \, ds} - P e^{-\int_0^{T_x} (r+h) \, ds} \right) 1_{T_x > \tau}, 0 \right) \right]|\mathcal{F}_0
\]

Using the assumption that the time to default process is independent from the Brownian motion process, $W_t$, that drives the capital gain process (see ref[1]), and the fact that the probability of default before time $T_x$, $P(\tau > T_x) = \exp \left( -\int_0^{T_x} h \, ds \right)$, we get further

\[
V = E \left[ \max \left( \left( \gamma G_0 e^{-\frac{\sigma^2}{2} t + \sigma W} - K \right), 0 \right) \right]|\mathcal{F}_0
\]

where

\[
K = P e^{-\int_0^{T_x} (r+h) \, ds} + \sum_{k=m}^{M} c_k e^{-\int_0^{T_k} (r+h) \, ds} - \gamma \sum_{i=j}^{N} d_i e^{-\int_0^{T_i} r \, ds} \equiv B_{0, T_x} - \gamma PV(remgDvd)
\]

Finally, one gets
\[ V = SN(d_1) - KN(d_2) \]  

(11)

where

\[ S = \gamma G_\theta, \]  

(12)

\[ d_1 = \frac{\ln \frac{S}{K} + \sigma^2 T_x}{\sigma \sqrt{T_x}}, \]  

(13)

\[ d_2 = \frac{\ln \frac{S}{K} - \sigma^2 T_x}{\sigma \sqrt{T_x}}, \]  

(14)

and \( N(\varphi) \) is the standard normal cumulative distribution function.
The convertible bond price is

$$CB = V + B_{0,T_r}$$

(15)

where $V$ is given by eq. (9) and $B_{0,T_r}$ by eq. (8).