This study examines the Iron Age of North Finland and focuses thematically on the economic weight of the coast during the Early and Middle Iron Age (500 BC–AD 600) and the shift of this weight to the inland zone during the Late Iron Age (after AD 600). Geographically the centre of attention is, as far as the coastal area is concerned, between the current towns of Raahe and Tornio while the inland zone contains the current provinces of North Ostrobothnia (inland areas), Kainuu and Lapland (Fig. 1). In the case of North Finland, there is little use in distinguishing the Viking Age as a single period of study as this arbitrarily defined time period between 800 and 1050 AD is inextricably tied to periods both preceding and following (see Ahola & Frog). Therefore in this study this time period is merely included in what is referred to as the Late Iron Age – i.e. in this context a time period after AD 800.

Problems of Research into the Iron Age in North Finland

The Iron Age of North Finland is not a widely studied period, which is why it is still more often than not omitted from studies concerning the Iron Age of what is today Finland. Archaeologists of the University of Oulu have had a long-standing interest in this phase of prehistory. This research reached its zenith during the 1980s and 1990s, when significant archaeological excavations were carried out on several Iron Age sites, such as the Rakanmäki cemetery and the activity site in Tornio, the Välikangas cemetery in Oulu, the Tervakangas cemetery in Raahe and the Länkimaa cemetery in Kemi. After this, however, the interest has somewhat waned up until recent years and, as a result, the Iron Age is still largely an unknown period in North Finland.

The problems of the Iron Age in what is today North Finland are to a large degree problems of research tradition. On the one hand, archaeologists’ lack of interest in the Iron Age of North Finland over the last two decades or so and disregard of the fact that the Iron Age cultural milieu in North Finland...
Fig. 1. Research area (North Ostrobothnia, Kainuu and Lapland) with major coastal towns marked. The thatch indicates the area referred to as coastal in the text.
significantly differs from that of the Iron Age core areas of South Finland (such as Tavastia and Finland Proper) on the other (see Laakso), have both contributed to the fact that, even though great strides were made during the late 1980s and early 1990s, we still know very little about the Iron Age in the area now under scrutiny. I argue that the archaeological research conducted in the 1980s and 1990s has been hampered by misunderstandings and a false premise concerning the period, resulting in a situation where North Finland is still implicitly and explicitly considered to have been more or less ‘wilderness’ during the Iron Age, with little or no human impact.

The false premise that has misguided Iron Age research in the north is crystallised in a dualistic approach dealing with ethnicities regarding ‘Finns’ (e.g. Huurre 1986: 149) and the Sámi. This results in a patterned research where archaeological material is divided between the ‘Finns’ and the ‘Sámi’ and then interpreted on the basis of this dualism. This has limited the grounds on which interpretations have been made – if the archaeological material has been deemed ‘Finnish’ the equivalents have been sought from the core areas of Southern Finland and when they have been interpreted as ‘Sámi’, eyes have been turned to the historically known and somewhat ambiguous ‘Lapps’. As the archaeological record in the north does not conform to either analogy, the period has remained largely unknown. Therefore often vague and ambiguous ethnicities should be abandoned in archaeological research and archaeology should not label data with ethnic terms. Instead archaeological material should be interpreted on its own merits and analogies for interpretation should be sought from general social theories utilised in other social sciences like anthropology and sociology as these have been formed in the process of studying human societies. This approach will enable an understanding of the processes behind human action, of which archaeological remains are a direct result.

The basis for the theoretical framework I use is tied closely to the social theory of Pierre Bourdieu, whose thoughts I see as having direct significance for archaeological research. It is important to ground archaeological research in a theoretical framework which has a strong link with reality – i.e. studies concerning real societies – because this prevents ‘ivory-tower empiricism’ where seemingly logical interpretations based on observed data are disconnected from reality because they are based on false assumptions stemming from ignorance of how the processes under study truly work (see Elias 1983; Bourdieu 1990a: 14–15; O’Brien 2007: 56–57, 66). Therefore, before turning to the archaeological data relevant for this study, I must digress and make clear the theoretical premises I operate with.

Theoretical Background: Material Culture Reflects Society’s Social Space

Material culture, i.e. the material remains that form archaeological data, is the direct result of human action. Human action on the other hand can be viewed from many angles but I operate on the principle that it is a form of communication with which past societies have signalled aspects of their
social world (Kuusela 2009; 2011; 2012a; Kuusela et al. 2010). By utilising material culture it is possible to signal aspects and properties of individuals, groups, places etc. without the need for verbal exchange, providing that the material ‘code’ is understandable to those observing it. To take a very simple example – a barrow built at a specific location may signal, for example, the following aspects pertaining to the location: a) this is a burial site; b) this is a sacred site; c) spirits live on this site, etc. Furthermore this communication may be taken to the level of individuals; for example, the size, shape or location of the barrow may further signal aspects about the individual buried within (see Kuusela et al. 2010; Kuusela 2011).

This should not be taken to mean that every aspect of material culture has been geared functionally towards this communication but rather that material culture, and more importantly how material culture has been used, always signals aspects of its users and therefore can be labelled communication. This is so because material culture is an excellent way to convey messages pertaining to the roles and qualities of individuals without the need for verbal verification of one’s status or role in one’s society with each acquaintance, and the more complex the society becomes and the more roles there appear in the social network of that society, the more need there is for such instant communication (Morris 1995: 431; Neitzel 1995: 396), or, as the proverb says: a picture says more than a thousand words. This is a plausible position to take as it fits well in a theoretical framework corresponding with observed human behaviour. The concept of fields, familiar from the sociological writings of Pierre Bourdieu, becomes especially useful in this context.

According to Bourdieu (Bourdieu 1985: 69–70; 1989: 16) the social space of a society is composed of social differentiation and is populated by fields encompassing specific areas of action. The position of agents in these fields is commensurate with their field-specific capital, i.e. how successful they are in the action represented by the field (Bourdieu 1985: 69–70; 1984). Fields exist relationally in the social space, forming what I call a society-specific field configuration, which means that in each society the fields of action have a different meaning and different position in the social space, i.e. different societies value different forms of action in differing ways (Kuusela & Saunavaara 2011: 207–208). As the capitals of all fields form the symbolic capital of the society (Bourdieu 1977: 183; 1989: 17; 1990b: 118–119; 1998: 48, 102), this means that the composition of symbolic capital, and therefore by definition the field configuration, varies between individual societies. Nevertheless close proximity and continuous contact make it possible for the field configurations and symbolic capital of neighbouring societies to begin to resemble each other, though they never become identical.

All this ties directly into archaeology for the reason that as archaeological material is a direct result of human action it is also a direct result of agents acting in the fields, from which follows the argument that archaeological data are, in fact, what remain of past societies’ fields and field configuration and the social space that produced it. As it is possible that close contact between societies will cause their respective field configurations to resemble
each other, it can be deduced that regularities observed in archaeological data become important and can plausibly be assumed to pertain to the social communication of the societies of whose actions the archaeological record is an outcome.

Before the Late Iron Age: Coasts

It would be difficult for an archaeologist to discuss a single prehistoric time period without reference to periods either preceding or following the one under scrutiny and it would be exceedingly difficult to do so with the archaeological material that forms the data used in this chapter. I must therefore ask the reader to bear in mind the fact that, in order to say something about the Viking Age, a significant portion of this chapter will be devoted to examining periods that precede the Viking Age, as only taking this long perspective will reveal and contextualise the processes that were in effect during the Late Iron Age.

Already during the Stone Age, the archaeological record in North Finland indicates that human activity was concentrated on the coasts and especially river mouths that experienced relative stability in relation to the shoreline, as the coastlines of North Finland were, and still are, subject to post-glacial land uplift, resulting in a receding shoreline (Vaneeckhout 2009). Horizontal coastline stability results in an area where the topography is steep, meaning that despite the sea level lowering vertically, the horizontal displacement of the coast is minimal. A good example of a stable milieu is the Stone Age village of Kierikki in Yli-Ii, some 50 km north of Oulu, where the coastline was stable for a very long time during the Stone Age, resulting in a long period of occupation (Vaneeckhout 2009; Costopoulos et al. 2012). This results in a general pattern of the archaeological record where older sites are located on higher elevations above sea level (henceforward a.s.l.) than younger sites, for example in the Oulu region the earliest Iron Age coastlines (around 500 BC) are located roughly 21–21.5 metres a.s.l. whereas the youngest known Iron Age cemetery of Välikangas, dating to the Late Roman Iron Age and Migration Period (AD 200–600), is located at an elevation of 15 metres a.s.l., corresponding with the contemporary coastline.

This pattern is naturally not without exceptions. Although it is certain that Stone Age sites cannot be located on Iron Age elevations, Iron Age sites may still be located on what would have been a Stone Age coastline. The trend of shore-boundedness is evident in the north during the periods from the Bronze Age to the Early Iron Age (Okkonen 2001; Ikäheimo 2005: 772–775; Kuusela et al. 2011: 182–188) but this does not mean that only the coasts were used, as the interior also has continuous signs of human activity during these periods (see Kuusela et al. 2011: 193–195 with citations). However, it is evident that the majority of sites known from the Bronze and Early to Middle Iron Ages are clustered on the corresponding coastlines.

In North Ostrobothnia, the sites from the Bronze and Iron Ages fall roughly into two distinctive categories – cooking pits and barrows or stone settings. A cooking pit is a type of archaeological site that mostly dates to the
Late Bronze and Early Iron Ages, roughly between 800 and 1 BC (Ikäheimo 2005: 118; Okkonen & Äikäs 2006: 21). From the area of the Oulujoki river estuary alone, between three and four hundred individual cooking pits are currently known, often clustered together (Okkonen & Äikäs 2006: 21). As to the function of the pits, there is no straightforward answer but the prevailing interpretation is that they are linked to the manufacture of seal train oil (Ylimaunu 1999; Ylimaunu et al. 1999: 148–153; Ikäheimo 2005: 781; Okkonen & Äikäs 2006). For the current discussion, the function of cooking pits is secondary, so suffice it to say that they signify intense human activity related to shorelines during the Bronze and Early Iron Ages.

It appears that cooking pits are in areas that have experienced relative stability in relation to horizontal shoreline displacement, i.e. how quickly the shoreline recedes. In flat and featureless areas the land uplift of, say, one metre in the vertical scale may cause the recession of the shoreline to considerable distances while steep inclines create the effect that while the land rises, the shoreline itself remains relatively stable. I examined the stability of cooking-pit sites in relation to horizontal shoreline displacement with GIS (Geographic Information Systems) by creating a 200 metre buffer around each site and then reconstructing the shoreline at one-century intervals with the aid of the shoreline displacement chronology of North Ostrobothnia (Okkonen 2003) and a 25 metre digital elevation model of the National Land Survey of Finland. With each site, I assumed that, as it is unlikely that cooking pits were constructed immediately at the edge of the water (Sandén 1995: 178; Okkonen 2003: 108–109; see also Ylimaunu 1999: 130), the actual shoreline would be at least two metres lower than the elevation of the site. With each site, I observed how long the shoreline remained within the buffer. This method is crude for several reasons – first of all, the buffer is generated around a single point and not the whole site, and secondly shoreline reconstructions are subject to uncertainties owing to local variances in land uplift (Okkonen 2003: 85–88 with citations). Also the radius of the buffer, 200 metres, is arbitrary. However, as the goal of this experiment was simply to compare sites with each other in relation to their potential shoreline stability and thus gain comparable indicative results, the apparent crudity of the method is not a key issue here. Altogether 79 cooking-pit sites from elevations corresponding with Bronze or Early Iron Age shorelines were included in the analysis. Figs. 2–3 demonstrate that the sites have a tendency to be located in areas that have remained close to the shoreline for several centuries. Altogether six sites were in unstable areas, meaning that they were within 200 metres of the shoreline for less than a century, and three were within 200 metres of the shoreline for one century or less. For the sake of clarity, these have been excluded from Fig. 2. Furthermore, four sites (Hangaskangas, Kiimamaa, Korkiamaa 3 and Metsokangas) have radiocarbon dates available. Whereas the radiocarbon date of three sites correspond with the shore phase, one, Korkiamaa 3, does not. This means that the latter was not located close to the shore at the time of its use, making it an exceptional case. Excluding Korkiamaa 3, as it was not shore-bound, the median stability of the 79 sites is five centuries,
Fig. 2. Stability of cooking pit sites in relation to horizontal shoreline displacement. Grey lines indicate 14C-dating.
and this is either met or exceeded by 45 sites. 62 sites remained stable, i.e. within 200 metres from the shoreline, over two centuries (Fig. 3). Therefore cooking pits seem to follow the same trend as the sites of earlier periods (see Vaneeckhout 2009) in relation to shoreline stability.

Most of the cooking-pit sites are at elevations that correspond with the Late Bronze and Early Iron Age shorelines, after which they sharply decrease in number, as can be observed in Fig. 4 (also Okkonen 2003: 169, Fig. 78). To be exact, 25 metres a.s.l., the threshold for the decline in the number of sites, is not the elevation of an Early Iron Age shoreline, but as already mentioned it is unlikely cooking pits were constructed immediately on the edge of the water (Sandén 1995: 178; Okkonen 2003: 108–109; see also Ylimaunu 1999: 130). 25 metres a.s.l. can be regarded as an appropriate threshold for Early Iron Age activities as the Early Iron Age shorelines range between 21.5 to 22.5 metres a.s.l. in the area under study.4

Barrows show a feature corresponding with the cooking-pit sites in that they were also constructed in relatively stable areas in relation to horizontal shoreline displacement. Figs 5–6 demonstrate this.5 I analysed altogether 47 sites at elevations equal to or lower than 36 metres a.s.l. using the same GIS method as for the cooking-pit sites. These 47 sites include most of the known sites on the elevations equal to 36 metres a.s.l. or lower from the area under study. The earliest Bronze Age shorelines, i.e. shorelines of c. 1500

4 I analysed altogether 47 sites at elevations equal to or lower than 36 metres a.s.l. using the same GIS method as for the cooking-pit sites. These 47 sites include most of the known sites on the elevations equal to 36 metres a.s.l. or lower from the area under study. The earliest Bronze Age shorelines, i.e. shorelines of c. 1500
BC, in the study area are located roughly between 34 and 32 metres a.s.l., so assuming once more that barrows were not constructed immediately on the edge of the water, an elevation of 36 metres a.s.l. is a plausible Bronze Age activity threshold. As not all of the sites have been excavated, it is likely that not all the sites presented in Figs 5–6 are prehistoric, as it is usually very difficult to ascertain with certainty the character of a stone structure with surveillance methods only (Okkonen 2003: 82–83). Even excavated barrows with typologically datable finds are problematic as it is possible that burials include finds from periods earlier than the grave itself (see e.g. Wessman 2009; 2010: 82, 96–97). Therefore, Figs 5–6 contain a margin of error that must be acknowledged. Four of the analysed sites were located within 200 metres of the shoreline for less than a century and one of them a century or less. For the sake of visual clarity these have been excluded from Fig. 5 but not from the statistics presented in Fig. 6. Among the sites, Länkimaa 1 is an exceptional case – the typological dating based on a brooch from the graves indicates that at least this burial dates from the Migration Period (AD 400–600). However, a radiocarbon sample taken from a hearth found in an activity area adjacent to the burials indicates a Merovingian Period or Viking Age date, which suggests that the burials and the adjacent activity area might not be contemporary with each other (Eskola & Ylimaunu 1993).

Fig. 4. Distribution of cooking pit sites in relation to elevation in meters above sea level.
Fig. 5. Stability of cairn sites in relation to horizontal shoreline displacement. Grey lines indicate 14C-dating while white lines indicate typological dating.
From Coast to Inland

The analysed sites have a median stability of five centuries which is met or exceeded by 27 sites. Altogether 37 remained stable, i.e. within 200 metres of the shoreline, over two centuries. Therefore, despite the problematic case of Länkimaa 1, it appears that a plausible conclusion of the results is that proximity to the shoreline was of importance during the Bronze Age and Early to Middle Iron Age in North Finland. I will return to the interpretation of this phenomenon at the conclusion of this chapter after examining the changes that occurred during the Late Iron Age.

The Late Iron Age: The Interior

The youngest known Iron Age barrow cemeteries in the coast of North Finland are the Late Roman Iron Age and Migration Period cemetery of Välikangas in Oulu (Mäkivuoti 1996; 2009) and the Migration Period Rakanmäki cemetery in Tornio (Mäkivuoti 1988; Kuusela 2013: appendix 1, 15). The hearth adjacent to the Länkimaa 1 burials also indicates Merovingian Period and/or Viking Age activity but the burials themselves are likely to be older. As a conclusion, from the Merovingian Period onwards, i.e. after AD 600,
barrows are no longer built on the coast, breaking a tradition dating as far back as the Neolithic (Okkonen 2003). The archaeological record of the Late Iron Age consists mainly of what in archaeological terminology are called stray finds – recovered artefacts not associated with a known site. In some cases, archaeological field research has established a context for recovered artefacts, i.e. a site has later been uncovered where the artefact or artefacts were found, and technically such a find can no longer be called a stray find. Nevertheless, for the sake of clarity, I will maintain a systematic terminology and refer to all Late Iron Age artefact finds as stray finds.

As a result of stray finds not being associated with any site, they have been somewhat under-studied in archaeology with the exception of typological analyses, and have more often than not been labelled as “memoirs of travellers or immigrants from outside” (e.g. Koivunen 1975: 17–22; Huurre 1983: 342–348; Taskinen 1998: 157). I will bypass them as artefacts and ignore their typological properties. Instead, I observe them as signs of human activity, which they undoubtedly are. I will also question their labelling as signs of ‘foreigners’ as unconvincing.

Stray finds provide a not unproblematic set of data – or, to be more specific, the difficulties in using them as material for research are fourfold. Firstly, their number is not very significant – only around 250 artefacts dating to the Iron Age have been recovered from North Finland. As these fall into all the periods of the Iron Age, their number per period is small (see Fig. 7a–g). On the other hand, one could argue that this is a problem pertaining to archaeological material in general, so in this regard stray finds do not significantly differ from other sets of data. A more serious problem is that of context: only in a few cases has a stray-find site been studied, but when this has taken place, it has been observed that they are either directly linked to an archaeological site or to an obvious cultural milieu that should be taken into account. The third problem pertains to dating. Most finds have been dated on the basis of typology, but we must remember that a typological age does not signify the age of deposition, i.e. the time that the artefact was left behind or became buried in the ground. In addition, some artefacts may have been used for a long time before deposition. Therefore typological dating can only give an approximation of the age of an artefact and can merely set an assumed terminus post quem dating. The fourth problem is the accuracy of the finds’ spatial data. Often stray finds have been removed to an archaeological collection after a considerable time had passed since the discovery of the object. The finder, for example a local peasant, may have passed away or may not remember where the find originally came from. On only a few occasions has an archaeologist been able to study the exact find location. Recently several Iron Age finds have been obtained from North Finland as a result of the rising interest in metal detectorism as a hobby (see e.g. Kuusela & Tolonen 2011; Kuusela et al. 2013; Hakamäki et al. 2013) and in these cases the find places have often been located with relative accuracy with a GPS unit. Despite these problems, the distribution of stray finds can give important information regarding activity areas, especially during the Late Iron Age, from which period known sites are few in the current study
area. When using stray-find data, the key is to examine large areas, whereby the problem of uncertain spatial data is, to a degree, mitigated.

Eliminating a False Premise

Before moving on to the interpretation, I must digress and eliminate what I consider a false premise of research regarding the Iron Age, and especially the Late Iron Age, in North Finland. I shall not view stray finds as signs of ‘foreigners’ or ‘immigrants’ for a very simple reason: I see such an interpretation as unconvincing. First of all, there is enough evidence to argue that the deposition of these so-called stray finds is not accidental, i.e. they are not to any significant degree items that have been ‘lost’ (see Hakamäki & Kuusela 2013). On the contrary, in several cases the opposite is clearly the case and it has been confirmed that the artefacts were deposited on purpose.\(^7\) In my view, the artefacts themselves are of secondary importance – their context matters. When stray finds have been deemed as being brought to the North by ‘outsiders’, the basis for this argument has been
the typological link of the artefact or artefacts in question to distant areas but not the context of the find. The archaeological record of the Late Iron Age of North Finland differs significantly from that of the Iron Age core areas of, for example, Southern Finland. If stray finds are not ‘lost’ items but were left purposefully at a certain place, one basically has to make a choice between two interpretations. The artefacts have either been hidden by these assumed ‘foreign visitors’ or they are the product of the actions of members of local communities; or, in the case of burials, they are burials of outsiders who have fallen on their journey or they are the burials of members of local communities. If we choose to go with the outsiders we would have to answer the question: why? – why would an outsider hide the artefacts in such a manner or why were their remains not taken home but given a burial significantly differing from the burial practices of their home regions (see Taavitsainen 2003)? Occam’s razor compels me to acknowledge the fact that the answer which makes fewer assumptions is that stray finds are the product of the actions of local communities and not of immigrants or foreign visitors. This is in accordance with the theoretical framework presented above in this chapter – different societies value fields of action in different manners thus resulting in different patterns of action. This means that the archaeological record of societies inhabiting different regions should differ from each other when compared. Therefore instead of trying to come up with complex explanations justifying the labelling of Iron Age material in the north as the product of immigrants, the evident differences should be acknowledged as simply being the result of the actions of different local societies. This explanation not only fits well with the social theory used in this chapter but it is directly corroborated by archaeological evidence, as can be deduced from the two examples below.

That a typological link does not mean a concrete link between two places is demonstrated in the case of a single find from Suomussalmi – a crucible for bronze jewellery typologically dated to AD 400–800 and linked to the Volga region (Huurre 1983: 332). Is this a sign of a bronzesmith who came from the faraway Volga to what is today Suomussalmi to manufacture bronze jewellery, or a product of a local community that has received the idea for this particular type of jewellery via interaction between neighbouring societies, who in turn may have received its jewellery or ideas for jewellery through interactions with their neighbouring societies etc.? I see local production and ideas received through, for example, trade relations once more as a more likely scenario because this eliminates the complex explanation required for the ‘Volgan’ bronzesmith arriving in the distant north for some reason. Another warning against too rigid a use of artefacts as evidence of direct cross-cultural links is provided by Kristina Creutz’s (2003) study of the Late Iron Age spearheads of the Petersen type M. These typologically similar spearheads were formerly thought to have been imported all over the Baltic Sea area from Gotland but Creutz has convincingly demonstrated that this is not the case – they are found all over the Baltic because they were made all over the Baltic (Creutz 2003). Therefore artefacts may have a completely different place of origin than their typology might suggest.
What this naturally means is that artefacts are very poor proof of immigration or ethnicities and therefore they should not be used to track, or date, for example, linguistic changes or ‘waves of immigration’.

Of the 253 finds used in this study, 160 have spatial data accurate enough (within 1 km of accuracy) to be used in distribution maps. These are presented in Fig. 7a–g, where the finds are classified in the following categories: a) all finds, b) undated, c) Merovingian Period or older, d) Merovingian Period or Viking Age, e) Viking Age, f) Viking Age or Crusader Period and g) Crusader Period. Referring to the above-mentioned problems pertaining to dating, presenting the finds in categories by period is misleading but justified to demonstrate that the number of stray finds seems to increase during the Late Iron Age. The change in the number of finds is further demonstrated in Fig. 8. The finds from the Merovingian Period or earlier are significantly more numerous than those of the Merovingian–Viking Age period largely because the majority of finds of the former category are oval fire-striking stones that are dated from the Early to Middle Iron Ages (Huurre 1983: 332–333) and thus cannot be given a more accurate dating estimate than before the Merovingian Period or Merovingian Period. Owing to their rather wide dating, some of the oval fire-striking stones could well belong to the Merovingian–Viking Age period and thus diminish the seeming difference between these two phases of the Iron Age.

Fig. 8. Stray finds distributed in chronological classes. The black bar represents all finds and the grey bar weapon finds.
Interpretation: Social Change in the Iron Age of North Finland

Archaeological material is clustered on sites and areas that have been, in one way or another, important for the community of whose actions the archaeological record is a result. As material culture is a form of social communication, areas and sites with archaeological material are places of importance pertaining to social communication (Kuusela et al. 2010; Kuusela 2011).

From the Early to Middle Iron Age, a general trend is evident: the coasts dominate the archaeological record. Most of the barrows are built in coastal areas whereas the interior is represented with a more incomplete picture where stray finds seem to be the main indicator of Iron Age activity. This might tempt an archaeologist to draw a line on the map where the coasts are dominated by the ‘barrow culture’ and the interior by the ‘stray-find culture’ but this picture is not clear-cut as inland barrows do exist (Okkonen 2003: 42–43; Taavitsainen 2003) and stray finds have been recovered from the coastal areas, although the clear majority of them are from inland. Nevertheless two zones of somewhat differing ways of producing material culture seem to be evident during the Early and Middle Iron Ages, which would suggest that the coastal and inland societies had different respective field configurations, meaning that the composition of their symbolic capital was different, at least with regard to how it was manifested in material culture. The reason for this, as I suggest, might be tied to the environment and economy.

The shoreline stability as a common feature of the Bronze to Middle Iron Age sites is an interesting one. Returning now to the cooking pits and their function: their exact function is not self-evident but the general field with which they are associated may perhaps be deduced. If they are connected with the manufacture of seal train oil or the processing of other maritime goods such as salmon (see Okkonen & Åikäs 2006: 30–31), they are economic in function. On the other hand, if they are, as their designation suggests, used in the preparation of food (Hvarfner 1963; Gustafson et al. 2005) they are also economic in function and, taking into account that the archaeological record in the coast clusters along the coast, the prepared food would very likely be mostly marine in nature (see Kuusela 2013: 89–95). This would explain their close relatedness to the sea – if they were used for the production/consumption of maritime goods, then it is only reasonable that they would be located on optimal sites for such activity. Also the sheer number of cooking pits in the north has been seen as an indication that the production/consumption, or whatever the pits were used for, reached levels that, perhaps a bit tongue-in-cheek, have been termed “almost industrial” (Ikäheimo 2005: 781; Okkonen & Åikäs 2006: 29). This would indicate the social significance of the action that the cooking pits are related to and thereby also signify the importance of the sea. This is supported by the fact that the contemporary burials, barrows and stone settings are also located in correspondingly stable areas along the contemporary coast. As burials are places of ritual and of significance to the community that built them, this should be seen as a link between economic and religious
importance (on this, see Kuusela et al. 2010). This would suggest that in the field configuration of the coastal communities, the economic factors related to the sea held an important place and therefore archaeological material was naturally clustered on sites corresponding with this ideology, i.e. sites strongly associated with the sea.

It is noteworthy that the age of cooking pits and barrows, signifying an era of intense activity, corresponds with contemporary developments elsewhere in Europe – the Bronze Age was a time of extensive social networks that connected the regions of Europe with each other (Kristiansen 1998). Sometime around 500 BC, the beginning of the Iron Age according to the Finnish chronology, this social network came under duress and at least partially broke down (Kristiansen 1998: 247, 290–291; Cunliffe 2008: 317–321, 348–351). This dating of the possible collapse is interesting because it seems to correspond with the North Ostrobothnian coastal phase, after which the number of both barrows and cooking pits radically decreases. Therefore it seems likely that the north was closely connected with other areas of Europe already during the Bronze Age as the collapse of the Late Bronze and Early Iron Age social network probably extended in its effects to the coasts of what is today North Ostrobothnia (Kuusela et al. 2011: 193).

Without a doubt a social change occurred at the beginning of the Iron Age but this change would not alter the underlying theme – the coasts remained important as cemeteries were still erected in stable coastal zones, which means that the field configuration of coastal communities still resembled that of earlier times. Furthermore, the evident change during the Early Iron Age did not change the relationship between the coastal and inland zones – the coastal areas retained their distinctive position when compared to the inland zone, implying that the importance of the coast as a zone of activity continued. A more drastic change occurred some time after AD 600.

After AD 600 the coasts are empty of the barrow cemeteries which were common in earlier times, and the Iron Age record goes relatively silent until the beginning of the Viking Age in the ninth century. However, as already mentioned, many of the stray finds from the Early to Middle Iron Age are oval fire-striking stones, whose dating cannot be established more accurately than being either Merovingian Period or older. Therefore how ‘empty’ the Iron Age record truly is after AD 600 is difficult to ascertain. It has recently been suggested that, in the interior, the Middle Iron Age, i.e. the time between AD 300 and 600, may have been a time of depopulation (Lavento 2011: 60–61) but the archaeological record at least in North Finland indicates that if there ever was an empty period, it occurred in the Merovingian Period, i.e. somewhere between seventh and ninth centuries AD. A recent article focusing on radiocarbon dates with an attempt to reconstruct the population development in what is today Finland sees no evident decline during the Middle Iron Age in the area now under study (Tallavaara et al. 2010). I myself would be cautious in considering depopulation as the reason for the change evident in the archaeological record between AD 600 and 800 and would rather see this as a period of social change pertaining to the field configuration of the coastal communities, during which the archaeological
record forms into a configuration dominated by stray finds. It is worth emphasising that stray finds are not only a phenomenon of the Late Iron Age as they are represented in the inland zones throughout the Iron Age, as Figs 7c–g and 8 demonstrate, but that after AD 600 they become almost the only feature in archaeological material both in the coastal and inland zones. This suggests a change in the field configuration of coastal societies, where material culture was now used in a way akin to inland zones, but it appears that some differences remained.

One has to be careful when operating on a detailed level with a small dataset such as Iron Age stray finds, which is why I am cautious in drawing too advanced an inference on the basis of the distribution of artefact types. But one feature does warrant closer scrutiny. When observing the distribution of stray finds, one is drawn to the fact that weapons – that is axes, scramaseaxes, spearheads and swords – have, with one exception (see Hakamäki et al. 2013b), only been recovered from the interior, as can be observed from Fig. 9. Iron Age weapons have been recovered as burial finds from the coasts but they are not common, only two cemeteries having yielded weapon finds – Valikangas in Oulu and Tervakangas in Raase.

The former is notable for the fact that it contained a significant number of weapons – seven of the twelve burials in total contained weapons (Mäkivuoti 1996: 100–104) – whereas of the eight excavated burials of the Tervakangas cemetery weapons were found in only one grave (Leppiaho 2005: 23–24).

As a find type, weapons are interesting owing to the connotation they carry – they are tools of violence. Granted, axes are also regular tools and it can be argued that spears may also be used in hunting but these other functions do not exclude their purpose as fighting weapons. Also, as the find material includes artefacts whose function as weapons of war cannot plausibly be argued against – two swords, a few battle-axes and scramaseaxes – one has to seriously consider the possibility that weapon finds have, at least partially, a symbolic meaning pertaining to violence. The basis for this reasoning is once more the premise that material culture is social communication. If artefacts that can be associated with violence are a recurring feature in the material culture, a conclusion can be drawn that the concept of violence was part of the social structures of the society (see Raninen 2006: 8–9; Kuusela 2012b). This is interesting taking into account the fact that weapon finds seem to some extent to increase during the Late Iron Age, as Fig. 9 demonstrates, while at the same time a specific stray-find type – silver deposits – appears in the archaeological record of North Finland. Human activity has been interpreted as increasing in North Finland, and in Finland more generally, during the Late Iron Age (Huurre 1992: 86–87; see also Koskela Vasaru; Raninen & Wessman), and the increasing number of stray finds agrees with this interpretation. In this light, the silver deposits may indicate that this activity has partly been economic, as the silver was brought from elsewhere to be traded in the north. As weapon finds also seem to increase during this period, one is tempted to suggest that this increased activity may not have been completely peaceful and violence may therefore have been emphasised in the ideology of local communities. If this is the case, the absence of silver
and weapon finds, and indeed the relatively scarce number of Iron Age finds in general, from the coastal area would suggest that, whereas the zone of activity resulting in relatively plentiful archaeological record of the Early and Middle Iron Ages was in the coastal area, at the beginning of the Viking Age at the latest this had moved into the interior (Kuusela 2013: 147–154; Kuusela 2014).
Conclusions

What the Iron Age archaeological record in the area under study seems to indicate is a change in the zones of activity resulting in a plentiful archaeological record in what is today North Finland. The emphasis of this activity shifted from the coast to the interior zone approximately between AD 600 and 800, and this activity probably increased as the Late Iron Age progressed. Considering that stray finds include silver hoards and a significant number of weapons, it seems plausible to suggest that this activity was associated with things that included, but were not limited to, such spheres of action as violence and trade.

Notes

3 Fig. 2 includes two sets of data when available. The first (black line) shows the time the site has remained within 200 metres of the shoreline whereas the grey lines (when present) indicate radiocarbon dates if available. It should be remembered that a radiocarbon dating only indicates the time margins within which the feature is dated. Therefore the grey line does not signify the total period of use but the period within which a specific single event may be positioned temporally. Sample IDs for the radiocarbon analyses are Hel-3833 for Hangaskangas, Hel-3236, Hel-3682 and Hela-50 for Kiimamaa, Hel-3824 for Korkiamaa 3 and Beta-183716 and Beta-184632 for Metsökangas.
4 Fig. 4 is inaccurate in the sense that it deals with the site's elevation above sea level with a single value whereas most sites have several cooking pits situated on slightly differing heights. Therefore a more exact way to represent the data would be to use the elevation of individual pits but as such data was not at my disposal during the time I made my analyses, Fig. 4 will have to suffice as it still probably demonstrates a true phenomenon where the construction of cooking pits seems to sharply decline at the beginning of the Iron Age (also Okkonen 2003: 169, Fig. 78). It is noteworthy that the barrows and stone settings, that is burial sites, of the Bronze and Iron Ages follow a similar pattern – 25 metres a.s.l. seems to be a climax in the number of individual barrows after which there seems to be a relatively sharp decline in their number (Okkonen 2003: 140, Fig. 49).
5 Fig. 5 includes three sets of data when available. The first (black line) shows the time the site has remained within 200 metres of the shoreline. The grey lines (when present) indicate radiocarbon dates if available (see note 1 concerning the interpretation of radiocarbon dates) and the white lines (when present) indicates the typological dating. Typological datings can be very wide as some artefact types have remained in use for long periods of time. Radiocarbon samples from Kiimamaa and Rakanmäki have not been taken from the excavated burials but from an activity area adjacent to the burials. Of the Rakanmäki series of dates, sample Hel-2431 indicates a deviation from the rest, whereas all the other samples gave dates from the Early to Middle Iron Ages, sample Hel-3421 indicates a medieval age (fourteenth to fifteenth century). This could indicate activity on the site during medieval times but considering that it is the only exception in an otherwise
uniform series of datings, contamination of the sample could also be a possibility. Sample IDs for the radiocarbon analyses are Hel-3235 for Länkimaa 1, Hela-88–89 for Tervakangas and Hel-2223–2228 and Hel-2427–2432 for Rakanmäki. For Kiimamaa see n. 1.

References

From Coast to Inland

