Moderate Concentrations of TNF-α Induce BMP-2 Expression in Endothelial Cells

Oski Illiandi1, Hidayat Sujuti2, Nungki Permatasari3, Setyawati Soeharto3

1Department of Anatomy, School of Medicine, University of Lambung Mangkurat Banjarmasin, South Kalimantan, Indonesia.
2Department of Biochemistry, Faculty of Medicine, Brawijaya University, Jalan Veteran, Kecamatan Lowokwaru, Malang, East Java 65145, Indonesia.
3Department of Pharmacology, Faculty of Medicine, Brawijaya University, Jalan Veteran, Kecamatan Lowokwaru, Malang, East Java 65145, Indonesia.

ABSTRACT
Tumor necrosis factor-alpha (TNF-α) is best-known as a potent pro-inflammatory cytokine involved in many cardiovascular diseases. During vascular calcification, TNF-α has been reported to promote osteogenic differentiation of human vascular smooth muscle cells (VSMC) and mesenchymal stem cells (MSCs). In contrast, there is a lack of data reporting the osteoinductive effect of TNF-α in endothelial cell. In this study, experiments were performed to investigate and determine the optimum dose of TNF-α that induces expression of the osteoinductive factor bone morphogenetic protein (BMP-2) in endothelial cells. Human vein endothelial cells were treated with TNF-α at doses of 0, 2, 5, 10, or 20 ng/mL for 2, 8, or 24 h time intervals. BMP-2 cell expression was evaluated using immunocytochemistry staining by calculating the percentage of BMP-2 positive cells. Apoptosis was determined by counting the number of pyknotic cells. In this study, we found that the optimum dose of TNF-α that induces BMP-2 expression in endothelial cells was 5 ng/mL at the 8 h time interval. Lower (2 ng/mL) or higher (10 and 20 ng/mL) concentrations of TNF-α had minimal effects on BMP-2 expression. Moreover, higher concentrations of TNF-α treatment (10 and 20 ng/mL) at 8 h and 24 h increased the presence of pyknotic endothelial cells, which represents the final stage of apoptosis.

Keywords: TNF-α; BMP-2; HUVEC; Endothelial cells

INTRODUCTION
TNF-α is best-known as a potent pro-inflammatory cytokine. As a pleiotropic cytokine, TNF-α plays an important role in osteogenesis. Depending on the microenvironment, in ostial tissues such as bone, TNF-α accelerates osteoclast activity leading to bone resorption during the final stages of osteoporosis1,2. In extra-ostial tissues, such as vascular tissue, TNF-α promotes mineral deposition leading to calcification3,4. Calcification leads to decreased vascular elasticity and increased vascular stiffness, which contribute to systolic hypertension5,6. It has been widely reported that TNF-α promotes a shift toward osteogenic differentiation in human vascular smooth muscle cells (VSMCs)7. TNF-α plays a pivotal role in regulating the shift of vascular mesenchymal tissues toward an osteogenic phenotype8,9. Moreover, endothelial cells area primary target of TNF-α-induced organ damage leading to endothelial dysfunction and vascular calcification10. Some studies have reported that TNF-alpha-exposed endothelial cells undergo osteogenic differentiation11,12. A shift toward an osteogenic phenotype causes endothelial cells to secrete bone morphogenetic protein 2 (BMP-2), which is a strong bone inductor of osteogenic activity in osteoblasts during bone formation13.

The role of TNF-α in VSMCs and mesenchymal stem cells (MSCs) is well documented, however the role of TNF-α in endothelial cells is less defined. It is poorly understood how TNF-α regulates endothelial BMP-2 expression. Hence, the aim of this study was to investigate TNF-α-mediated regulation of BMP-2 expression in a dose- and time-dependent manner.

MATERIALS AND METHODS
This study obtained ethics approval by the Human Ethical Committee of the University of Brawijaya, Malang, Indonesia (141/EC/KEPK/S3/05/2016). Human umbilical vein endothelial cells (HUVECs) were isolated by digestion of umbilical cord veins using 0.05% collagenase (from Clostridium histolyticum, Worthington, Lakewood New Jersey, USA) for 15 min. The medium was then changed to remove blood components and non-adherent cells. Adherent cells were then plated on 25 cm² Falcon flasks in RPMI-1640 medium containing 25 mM HEPES and L-glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin, 10% heat-inactivated fetal calf serum (FCS), and 10% newborn calf serum (NBCS). Cells were then allowed to attach to the dishes for 3 h. When cells reached confluence, ECs were detached with 0.05%
Figure 1: Immunostaining of BMP-2 in control endothelial cultures shows no BMP-2 expression with 0 ng/ml TNF-α at durations of 2 h, 8 h, and 24 h, respectively (A, B, C). At 2 ng/ml concentration of TNF-α, immunostaining shows minimal expression (D, E) of BMP-2 at 24 h (F). Treatment with TNF-α 5 ng/ml (G, H, I) demonstrates optimal expression of BMP-2 immunostaining at 8 h. Furthermore, low expression of BMP-2 is shown along with cellular pyknosis at 10 ng/ml at all times, 2 h, 8 h, or 24 h, respectively (J, K, L) and 20 ng/ml at 2 h, 8 h, or 24 h, respectively (M, N, O) (P<0.05). Arrows point to pyknosis and nuclear karyorrhexis in apoptotic endothelial cells. (M=400x).
trypsin: 0.02% EDTA, and subcultured at a 1:3 ratio in the EC cell growth medium above containing, in addition, 15 mg/ml endothelial cell growth supplement (Sigma Chemical Co., UK) and 50 U/ml heparin (Leo Laboratories Limited, UK). Cells were then cultured on 24-well plates (Falcon; BD Biosciences, New Jersey) in M199 medium containing 20% feta bovine serum, 100 U/ml penicillin-streptomycin, 0.1 mg/ml heparin, and 0.05 mg/ml EGF. Cells were then incubated at 37°C in a 5% CO2 humidified incubator. At 80% confluency, cells were exposed to increasing doses of TNF-α (0, 2, 5, 10, 20 ng/ml) for 2, 8, or 24 h intervals. Cells were fixed with 5% methanol and stained with BMP-2 antibodies.

Statistical Analysis
Data were analysed by one-way ANOVA and the differences between groups were analysed by LSD post hoc comparison tests. Data are expressed as mean±standard error of the mean (SEM). P values less than 0.05 were considered statistically significant.

RESULTS AND DISCUSSION
In this study, we show that TNF-α increases expression of BMP-2 in endothelial cells in a dose- and time-dependent manner. As shown in Fig 1, the optimal dose of TNF-α that induces BMP-2 is 5 ng/ml at the 8 h time interval. TNF-α treatment does not increase BMP-2 expression at doses above this concentration because TNF-α at 10 and 20 ng/ml induce cellular apoptosis, particularly at the 8 h time interval, as shown in Fig 3. BMP-2 is not optimally expressed at TNF-α 10 or 20 ng/ml, perhaps because cellular apoptotic signalling is activated before optimum BMP-2 signalling has been reached. As seen in area percentage in Fig 2, BMP-2 expression decreases and cells become more pyknotic, as shown in Fig 3.

In Fig 3, the number of pyknotic cells increased in response to TNF-α at 10 or 20 ng/ml concentrations. The induction of pyknosis can be explained due to activation of either the TRAF pathway or the endoplasmic reticulum pathway. Low doses of TNF-α at 2 ng/ml results in lower BMP-2 expression at 2 h, 8 h, and 24 h time points. However, different results were obtained by Buendia et al. who used 20 nm/ml of TNF-α with 24 h duration to induce endothelial secretion of micro-particles. It is debatable as to whether micro-particle secretion can induce in false positive results due to apoptotic cellular fragments or are a true function of exocytotic cellular vesicles.

Endothelial micro-particles are often misunderstood by many researchers as independent membrane vesicular cell

Figure 2: BMP-2 expression optimally increase in TNF-α 5 ng/ml at 8 h and gradually decrease in higher dose at 10 and 20 ng/ml. In control solution TNF-α 0 and 2 ng/ml shows minimally BMP-2 expression at any time interval 2h, 8h and 24h (* p<0.05).

Figure 3: TNF-α 10 and 20 nm/ml at any duration shows more pycnotic cells compare than TNF-α 0, 2 and 5 ng/ml (p<0.05).
products. In addition, many reports have concluded that microparticles are actually apoptotic bodies that are released during the final stages of cellular apoptosis.

CONCLUSIONS
The optimum dose of TNF-α that induces BMP-2 expression in endothelial cells without inducing apoptosis is a moderate dose of 5 ng/mL at the 8 h time interval. The lower (2 ng/mL) or higher (10 and 20 ng/mL) concentrations of TNF-α resulted in minimal expression of BMP-2. Moreover, higher concentrations of TNF-α (10 and 20 ng/mL) at 8 h or 24 h time intervals induced apoptosis in endothelial cells. These data maybe useful for further studies that examine TNF-α-induced expression of BMP-2 in endothelial cells.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

ACKNOWLEDGEMENT
The authors thank to Permata Bundah Hospital and Melati Husada Hospital Malang for umbilical cord provision in this study.

REFERENCES