Old Nubian Prosody and Assimilation

Vincent W.J. van Gerven Oei
<vincent@vangervenoei.com>

April 1, 2017

1 Introduction

Good afternoon everyone. I would first like to thank Moges Yigesu and the team from the University of Addis Ababa for organizing this conference and hosting us here in Addis Ababa and Angelika Jakobi for her collaboration on putting in place there very exciting panels on Nubian phonology and tonology.

Today I would like to talk about reconstructing Old Nubian prosody.

Old Nubian is a Nilo-Saharan language\(^1\) spoken in the medieval Nubian kingdoms established below the First Cataract of the Nile: Nobadia, Makuria, and Alwa. It has been attested between the 8th and 15th centuries,\(^2\) with a highpoint around the 12th century.\(^3\)

Old Nubian is part of the Nubian family within the North-Eastern Sudanic subgroup of the Nilo-Saharan phylum. Its closest relatives are other Nile Nubian languages such as Dongolawi, Kenzi, and Nobiin, as well as the Western Nubian languages that include Birgid, Midob, and a large group of Kordofan Nubian languages. Together with Meroitic, it is the oldest known representative of the Nilo-Saharan phylum.

Even though Old Nubian is an extinct language and did not, as far as we currently know, have any system of expressing prosodic features such as stress or tone, it will be my claim that we can reconstruct at least part of its prosody based on assimilation, deletion, and epenthesis patterns that heretofore had remained unexplained.

In his groundbreaking article on Old Nubian morphophonology Fritz Hintze remarks that ‘Bei der Durcharbeitung des altmubischen Materials macht man bald die Beobachtung, daß die Handschriften die Assimilationsregeln nicht immer befolgen, so daß assimilierte Formen neben nicht assimilierten stehen’.\(^4\)

For example, how do we explain the difference between the following two examples?

(1) St 5.3–4 ⲫⲇⲉⲛⳝⲁⲣⲁ
(2) St 5.7 ⲫⲇⲉⳡⳝⲉⲥⲟ

Why does the second one show assimilation of the nu before the jima and the first one not? I will argue that this is not just a writing error, but a reflection of the underlying prosody and the phonological rules associated with it.

2 Old Nubian Phonology

Let us first give a brief overview of the Old Nubian phonemic inventory, which is very similar to contemporary Nile Nubian languages:

<table>
<thead>
<tr>
<th></th>
<th>Bilabial</th>
<th>Labiodental</th>
<th>Alveolar</th>
<th>Postalveolar/Palatal</th>
<th>Velar</th>
<th>Glottal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plosive</td>
<td>(p) b</td>
<td>t</td>
<td>d</td>
<td>j</td>
<td>(k)</td>
<td>g</td>
</tr>
<tr>
<td>Nasal</td>
<td>m</td>
<td>n</td>
<td>n</td>
<td>j</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>Fricative</td>
<td>f</td>
<td>s</td>
<td>n</td>
<td>j</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>Tap</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral</td>
<td>l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximant</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>j</td>
</tr>
</tbody>
</table>

Table 1: Old Nubian consonant inventory

As you can see it is uncertain whether Old Nubian had distinct voiceless bilabial and velar stops. The frequent spelling alternations between the two seem to suggest that the difference between voiceless and voiced for those two points of articulation was at least weaker than for alveolar stops. Note that /t/ and /d/ may have had different points of articulations, with [t] alveolar and [d] post-alveolar.

<table>
<thead>
<tr>
<th></th>
<th>Front</th>
<th>Central</th>
<th>Back</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close</td>
<td>i, iː</td>
<td>u, uː</td>
<td></td>
</tr>
<tr>
<td>Mid</td>
<td>e, eː</td>
<td>o, oː</td>
<td></td>
</tr>
<tr>
<td>Open</td>
<td>a, aː</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Old Nubian vowel inventory

Old Nubian seems to have had both long and short vowels, which appear not to have been consistently differentiated in the spelling. However, long vowels can be reconstructed on the basis of contemporary Nile Nubian languages.

I will also make four assumptions that I won’t explicitly prove here, but I hope are relatively uncontroversial.

Assumption 1 Old Nubian syllables have the following structure: (C)-Nuc-(C), with Nuc: V, Vː, rV, or Vr.
Assumption 2. Old Nubian metrical feet are trochees, the rightmost foot being the heaviest: (\textacutesum). Note that it is unclear whether prosodic heaviness was expressed through a tonal or a stress accent.

Assumption 3. Metrical feet are assigned from left to right.

Assumption 4. The main stress on a root is fixed.

The fifth assumption is key to the reconstruction I will propose below.

Assumption 5. Greek loanwords preserve their stress pattern.

This means that if we can establish correlations between certain phonological processes on the right edge of Greek loanwords and link these to stress, we can then use these correlations to predict stress in native Old Nubian words. I have indicated stress whenever I felt certain.

3 Reconstruction

3.1 Dataset 1: Plural

Epenthesis after double consonant

(3) St 14.7–8 ● ⲃⲣⲁⲓⲣⲓⲅⲟⲩⲛ /har.mi.gun/

(4) L 104.2 ● ⲃⲣⲁⲓⲣⲓⲅⲟⲩⲛ /sip.pi.gun/

No epenthesis after unstressed [–voice].

(5) SC 16.1 ● ⲁⲃⲓⲧⲓⲣⲟⲟ-ⲓⲅⲟⲩ-ⲅⲗ̄ⲗⲉ /a'pos.to.los.gu.na/ (Gr. ἀπόστολος)

(6) SC 19.2 ● ⲧⲣⲟⲧ-ⲓⲅⲟⲩ-ⲅⲗ̄ⲗⲉ /tro.to.los.gu.na/ (Gr. φησίνος)

(7) P.QI 2 18.iv.6 ● ⲁⲧⲓⲣⲟ-ⲓⲅⲟⲩ-ⲅⲗ̄ⲗⲉ /a'pos.to.los.gu.na/ (Gr. ἀγγέλος)

(8) P.QI 2 13.i.20 ● ⲭⲣⲓⲧⲓⲧⲓⲣⲟ-ⲓⲅⲟⲩ-ⲅⲗ̄ⲗⲉ /xRis.to.los.gu.na/ (Gr. ἀγγέλος)

Epenthesis after stressed [–voice].

(9) SC 7.6 ● ⲁⲣⲓⲧⲓⲣⲟ-ⲓⲅⲟⲩ-ⲅⲗ̄ⲗⲉ /a'pos.to.los.gu.na/ (Gr. μαθητής)

(10) M 2.12 ● ⲧⲣⲟⲧ-ⲓⲅⲟⲩ-ⲅⲗ̄ⲗⲉ /du'tRa.bi.gul.de/ (Gr. μάθημα)

But also:

(11) SC 4.19 ● ⲧⲣⲟⲧ-ⲓⲅⲟⲩ-ⲅⲗ̄ⲗⲉ /ka'po.bi.gu.ku/

(12) M 2.9 ● ⲧⲣⲟⲧ-ⲓⲅⲟⲩ-ⲅⲗ̄ⲗⲉ /du'tRa.bi.gul/de/ (Gr. μαθηματικός, with metathesis)

Ahmed Sokarno Abdel-Hafiz, “A Reference Grammar of Kunuz Nubian” (PhD diss., State University of New York, 1988), §2.3 “In [K.] stress is not phonemic; it does not show semantic contrast. All words are regularly stressed as follows: the stress falls on the first syllable of one-syllable words\ldots [\ldots] With two- and three-syllable words, (unless there is a long vowel) the stress falls on the penultimate. […] A long syllable is always stressed[,] […] There are a few bisyllabic words that are stressed on the final syllable rather than the penultimate as predicted; such words are marked for stress in the lexicon.” See also Herman Bell, “The Tone System of Mahas Nubian,” Journal of African Linguistics 7 (1968): 27.
3.2 Dataset 2: Locative

The locative in Old Nubian ends in -\(\lambda o\) and shows a distinct pattern of epenthesis and assimilation.

Epenthesis after double consonant

(13) P.QI 3 30.31 ⋅ काːल-\(\lambda o\) /kad.di.lo/
(14) L 113.7 ⋅ माːलːोːक-\(\lambda o\) /ma.ja.los.ki.lo/
(15) St 17.9 ⋅ गौː-\(\lambda o\) /gis.si.lo/
(16) P.QI 2 18.iv.11–12 ⋅ कौːक्क-\(\lambda o\) /'kif.kif.ki.lo/

Assimilation after [+nas], [+rhot]

(17) SC 19.19 ⋅ कोːफ-रो- /'ko.er.ro-/
(18) SC 22.11 ⋅ एँ-नो- /'in.no-/

No change after other [+voice]

(19) L 100.2 ⋅ टोː-\(\lambda o\) /'tu.lo/
(20) M 12.14 ⋅ चोː-\(\lambda o\) /'yog.lo/
(21) P.QI 1 5.ii.14 ⋅ गोː-\(\lambda o\) /'yod.lo/
(22) P.QI 2 16.v.5 ⋅ धैː-\(\lambda o\) /'jem.lo/
(23) SC 4.17 ⋅ एँ-\(\lambda o\) /'il.lo/

For roots ending in voiceless consonants, however, we find that stress determines the appearance of the epenthetical vowel.

Epenthesis after stressed [-voice]

(24) St 8.12 ⋅ चत्वर:-\(\lambda o\) /is.tav'ro.si.lo/ (Gr. σταυρός)
(25) P.QI 3 30.18 ⋅ एπώːकς:-\(\lambda o\) /e.pi.ma'ko.si.lo/ (Gr. Ἐπιμυχός)
(26) P.QI 1 10.B.i.11 ⋅ किओ:-\(\lambda o\) /'ki'o.su.lo/ (Gr. -κιός)

No epenthesis after unstressed [-voice]

(27) L 112.8 ⋅ नर्सी:-\(\lambda o\) /par.te.nos.lo/ (Gr. παρθένος)

But also:

(28) SC 19.14 ⋅ नेर्त:-\(\lambda o\) /'me.ert.lo/
(29) L 109.2 ⋅ कोक्क:-\(\lambda o\) /kos.kat.lo/
(30) P.Attiri i.1.7 ⋅ नातक:-\(\lambda o\) /man.tak.lo/; SC 5.23 ⋅ मन ताक:-\(\lambda o\) /man.tauk.lo/
(31) M 16.1 ⋅ ताक-\(\lambda oːक़)/ /tan'slo.ko/
In (28) we are dealing with a situation in which one prosodic word includes two lexical words. In (29) we have found an example of a “defective” root, first conjectured for Meroitic by Claude Rilly,6 which end in an incomplete syllable with stress.

3.3 Dataset 3: Topicalizer

Our second data set concerns the topicalizer -ⲉⲓⲟⲛ /-jon/, which shows both assimilation and deletion.

After a voiceless consonant, we always find deletion:

Deletion after [-son]$_{\sigma}$

(32) P.QI 4 91.re.2 ● ⲉⲓⲕ-ⲟⲛ /aj.kon/
(33) M 1.11 ● ⲉⲕⲃ-ⲟⲛ /dij.kon/
(34) M 6.13–14 ⲙⲟⲩⲔⲓⲟⲛ-ⲟⲛ /kum.pu.kon/

After sonorants, however, it again appears to depend on the position of the stress:

Deletion after stressed [+son]$_{\sigma}$

(35) P.QI 1 4.ii.1 ● ⲉⲃⲣ-ⲟⲛ /ma’ri.on/ (Marίa)
(36) P.QI 1 4.i.13 ● ⲇⲃⲧⲉⲩⲗ-ⲟⲛ /pis’tew.lon/ (πιστεύω)

But also:

(37) M 13.14–15 ● ⲕⲃⲑ-ⲟⲛ /i.ron/
(38) K 23.12 ● ⲉⲅⲃⲧⲑ-ⲛⲓⲁⲛ /mal’lec.on/ (N.K.D. mallē)

Assimilation after unstressed [+son]$_{\sigma}$

(39) M 3.15 ● ⲕⲃⲃⲃ-ⲙⲑⲃ /it.til.lon/
(40) SC 17.20 ● ⲡⲝⲣⲕⲟⲛ-ⲙⲃ /in.en.non/
(41) P.QI 2 18.iii.3 ● ⲉⲁⲣ-ⲟⲛ /di.ar.ron/
(42) L 109.1–2 ● ⲟⲙⲧⲉⲃⲃ-ⲙⲃ /o.sije.a.jon/

Based on our three assumptions about Old Nubian syllable structure, metrical feet, and conservative stress in Greek loanwords, and the two data sets discussed above, we can arrive at the following lemma:

Lemma 1 Progressive assimilation is restricted to unstressed syllables.

3.4 Dataset 4: Participle

The question is now whether the same holds true for regressive assimilation. This indeed seems to be the case if we look at the assimilation pattern of the determiner -ⲗ in participial forms.

Regressive assimilation when unstressed

(43) K 22.3 ● .rmi.kasla /tij.jik,ka.sin/
(44) SC 7.16 ● i.kikka /jąk.kik,ka/
(45) SC 19.14 ● es.tak.cika /es.ki,tak.sik,ka/
(46) SC 22.7 ● i.dok[ka] /ʒɔr.ok,ka/ (N. jūr, K.D. jōr)
(47) P.QI 3 53.2 ● oo.kka /os.sik,ka/

No assimilation when stressed

(48) SE A.i.12 ● dol.sil.ka /dol.li,si.k,ka/
(49) P.QI 4 110.ve.2 ● e.tak.ka /i.ta,kil,ka/

But also:

(50) K 29.11 ● wol.ka /a:wol,ka/ (N. āw, K.D. āu)
(51) P.QI 1 7.1.12 ● suk,ko.lka /suk,ko.l,ka/
(52) St 12.9 ● pan.jil.ka /paŋ.jul,ka/

Just like a few other forms we encountered above, these show that although Old Nubian feet are trochees, roots can have main stress either on the first or the second syllable. This is lexically determined.

(11) SC 4.19 ● kalig-γouga /ka'po.bi.gu,ka/
(12) M 2.9 ● douγγouγa /du'ra:bi.gu,lo/ (N. dirbād, with metathesis)
(38) K 23.12 ● malke.on /mal'ke.on/
(31) M 16.1 ● tan.ilo.ko /tan'slo,ko/
(50) K 29.11 ● wol.ka /a:wol,ka/ (N. āw, K.D. āu)
(51) P.QI 1 7.1.12 ● sukk-oko.lka /suk,ko.l,ka/
(52) St 12.9 ● pan.jil.ka /paŋ.jul,ka/

We can now also rewrite our lemma:
Lemma 1’ Assimilation is restricted to unstressed syllables.

And add a second:

Lemma 2 Bisyllabic roots can have stress either on the first (default) or on the second syllable (marked). The second syllable may be either full (\texttt{kə̄pə̄̄}) or defective (\texttt{sysə̄̄}).

3.5 Dataset 5: Negative and Causative

There is not only a correlation between unstressed syllables and assimilation. Some verbal morphemes additionally show a reduction of the main vowel.

Negative -\texttt{mə̄}/-\texttt{mə̄̄}:

(53) St 6.3 ● \texttt{də̄kkiə̄p̄-mə̄-cə̄lo} /dekkiki.mir.mis.se.lo/;
(54) SC 21.20 ● \texttt{tə̄-mə̄-cə̄} /im.mis.se/;
(55) K 20.5 ● \texttt{kə̄-mə̄-cə̄} /kim.mis.so/;
(56) K 20.6 ● \texttt{gə̄-mə̄-cə̄na} /ŋi.mis.so.mə̄/;

Causative \texttt{gə̄p̄}/-\texttt{ḡp̄}/\texttt{ḡp̄}:

(57) SC 2.14–15 ● \texttt{oγə̄l-gə̄c-cə̄yə̄} /ul.gas.su.ka/;
(58) St 7.1–2 ● \texttt{gə̄də̄-gə̄l-gə̄lə̄cə̄} /i.ja.ril.gad.ja.den.ka/;
(59) St 5.3 ● \texttt{pə̄-gə̄r-pə̄} /pil’li.gRa/ (cf. P.QI 1 8.i.7 ● \texttt{pə̄cə̄tə̄yə̄})

3.6 Dataset 6: Imperative

So far we have only discussed morpheme which by themselves do not attract stress. If we look at the following example. The first verb in the sentence shows no assimilation of the \textit{nu} before the \textit{jima}, whereas the second does. Based on lemma 1, this means that the stress pattern of the first and the second verb are different. What is also different is that only the second verb is an imperative form.

(60) St 5.1–7 ● \texttt{eɛlə̄ mə̄kstə̄pə̄ mə̄kə̄mə̄kə̄ ouka pə̄līə̄pə̄} [\texttt{də̄mə̄də̄pə̄}] \texttt{ɛlə̄n mə̄kstə̄pə̄}
\texttt{eɛkə̄ də̄mə̄kə̄pə̄ ouka pə̄līə̄pə̄} [\texttt{mə̄ɛpə̄də̄pə̄}]

eil lo
eagerly.\texttt{loc1} mystery-PRED all-ACC 1PL.EXCL-ACC
\texttt{pil-igr-a}
\texttt{den-j-ə̄r-a}
\texttt{cl-on}
\texttt{mustə̄rə̄}
\texttt{shine-CAUS-PRED APPL.1-PLACT-PST1-NEUT-PRED now-TOP mystery}
\texttt{eik-ka}
\texttt{egid-r-ou-ka}
\texttt{ask-}
\texttt{neut-1/2pl-acc}
\texttt{ou-ka}
\texttt{pil-igr-a}
\texttt{2sg-ACC ask-NEUT-1/2PL-ACC 1PL.EXCL-ACC shine-CAUS-PRED}
\texttt{deñ-j-e-so}
give.1-PLACT-IMP.2/3SG.PRED-COMM
‘Eagerly you have revealed to us every mystery, and now reveal to us the mystery which we ask you.’

(1) St 5.3–4 ● δενοδαρά /den.ja.ra/
(2) St 5.7 ● δεμαθή /de.m.a.to/

It thus seems that the imperative subject 2/3SG subject clitic -ε attracts the stress. This is confirmed by other evidence:

(61) St 29.10 ● ταν-ηαο /tan.ia.so/
(62) St 18.11 ● ουλαγ-ηαο /ul.gi.ia.so/
(63) SC 4.23 ● διλαγ-ηαο /dil.gi.ia.so/

Assuming that imperative subject clitics are stressed also explains the occasional appearance of IMP.2/3PL allomorph -αω, with initial alpha:

(64) P.QI 2 26.6–7 ● ακ-αμαο /a.kai.ia.so/
(65) P.QI 1 7.1.5 ● ειανου-ηαο /i.a.ru.ia.so/
(66) St 29.12–30.1 ● οευα-ηαο /sew.et.ia.so/

This sort of analysis can also improve our explanatory capacity of explaining the appearance of other epenthetic vowels in the Old Nubian verbal complex, and, moreover, predict the wellformedness of certain forms.

(67) L 109.4–9 ● ειν[α] θελοκοσιον τεκκα ειςγαρεον... ten [ε]ουριαμ ηι λικονο ειςγαρεων

ein-na ale-loko-eion tek-ka
2SG-GEN truth-LOC:through-TOP 3PL.ACC
ηις-αγαρ-ε-ςο ... ten jouria-mon ai
holy-CAUS-IMP.2/3SG.PRED-COMM 3PL.GEN because.of-CONJ 1SG
ai-k-ono ηις-αγης-ςο
1SG-ACC-REFL holy-INCH-NEUT-1SG.PRED-COMM

‘And hallow them through your truth [...] And because of them may I become hallowed myself.’ (Jn 17:17, 19)

In this case, the first form contains an imperative subject clitic, while the second one doesn’t.

(68) L 109.4 ● ειςγαρεων /ης.s.gα.re.so/ , *ειςγαρεων
(69) L 109.9 ● ειςγαρεων /ης.sα.g.re.so/ , *ειςγαρεων
3.7 Labile Roots

Finally, I would like to touch upon a subclass of verbal and nominal roots, which I have called “labile roots,” which exhibit a variety of phonological patterns on their right edge, irrespective of the stress. It is assumed that all of the labile roots end in a tap/flap /r/ or lateral /l/

Nouns:

(70) ⲁⲧⲁ(ⲣ) ‘son’; P.QI 2 16.ii.4 ● Ⲉⲡⲧⲟⲩ; M 9.8–9 ● Ⲅⲧⲳⲥⲓ; ⲑ 17.7 ● Ⲥⲡ; M 14.12 ● Ⲥⲡ-ⲡ; M 13.9 ● Ⲥⲡ-ⲣ
(71) ⲇⲟⲩ(ⲣ) ‘ground’: SC 2.5 ● ⲇⲟⲩ-ⲧ; SC 8.20 ● ⲇⲟⲩ-ⲧ; P.QI 3 40.13 ● ⲇⲟⲩ-ⲧ; ⲁⲣⲓ; M 7.9 ● ⲇⲟⲩ-ⲧ; ⲁⲣⲓ;
(72) ⲇⲧⲁ(ⲣ) ‘girl’: M 4.1 ● ⲇⲧⲁ; M 7.9 ● ⲇⲟⲩ-ⲧ; ⲑ 31.11 ● ⲇⲟⲩ-ⲧ; ⲑ 26.5 ● ⲇⲟⲩ-ⲧ; ⲑ 30.32 ● ⲇⲟⲩ-ⲧ; Dong 2.ii.4 ● ⲇⲟⲩ-ⲧ;
(73) ⲇⲧⲁⲇ-ⲟⲩ; M 9.8–9 ⲇⲧⲁ-ⲩ; M 13.9 ⲇⲧⲁ-ⲩ; M 14.12 ⲇⲧⲁ-ⲩ;
(74) ⲇⲧⲁ-ⲩ; M 13.9 ⲇⲧⲁ-ⲩ; M 14.12 ⲇⲧⲁ-ⲩ;
(75) ⲇⲧⲁ-ⲩ; M 13.9 ⲇⲧⲁ-ⲩ; M 14.12 ⲇⲧⲁ-ⲩ;
(76) ⲇⲧⲁ-ⲩ; M 13.9 ⲇⲧⲁ-ⲩ; M 14.12 ⲇⲧⲁ-ⲩ;

Verbs:

(61) ⲇⲧⲁ(ⲣ) ‘to come’: St 29.10 ● ⲇⲧⲁ-ⲧⲧⲧlesai

4 Conclusion

I hope that I have been able to show that based on five assumptions about Old Nubian syllable structure, metrical feet, and the preservation of stress in Greek loanwords, it is possible to deduce a considerable part of Old Nubian prosody. This has also allowed me to substantiate the evidence for two lemmas:

Lemma 1” Assimilation is restricted to unstressed syllables and labile roots ending in -ⲧ/ⲧ.

Lemma 2 Bisyllabic roots can have stress either on the first (default) or on the second syllable (marked). The root may be either full (ⲧⲧⲧ위

Whereas lemma 1 is consistent with cross-linguistic data about the conditions under which assimilation often takes place, lemma 2 surprisingly matches the claims made by Claude Rilly about the structure of Meroitic roots, which also split into what I have called full and defective roots:

Full:

(77) CV- Ⲉⲧ- ‘donner’
(78) VC- ⲇⲧ- ‘prendre, recevoir’
(79) CVC- **wal** ‘chien’

Defective:

(80) V.C- **e.r(a)** ‘lait’

(81) CV.C- **ka.d(i)** ‘femme’

(82) CVC.C- **at.t(u)** ‘eau’

(From Rilly, *Le méroïtique et sa famille linguistique*, 380)

References

